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ABSTRACT

In the periphery, physiological dopamine in-
creases renal blood flow, decreases renal re-
sistance and acts on the kidney tubule to en-
hance natriuresis and diuresis. Dopamine
receptors can be divided into D1-like (D1 and D5)
receptors that stimulate adenylyl cyclase and
D2-like (D2, D3 and D4) receptors that inhibit
adenylyl cyclase. Both the D1-like and D2-like
receptors are expressed in the kidney. Dopamine
is synthesized in the epithelial cells of the proxi-
mal tubules which are endowed with a high aro-
matic L-amino acid decarboxylase (L-AADC)
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activity. Dopamine of renal origin behaves as
an endogenous natriuretic hormone interacting
with tubular D1-like receptors to inhibit the Na+-
K+ ATPase and Na+-H+ exchanger, as a
paracrine/autocrine substance. Dopamine
newly synthesized in tubular epithelial cells un-
dergoes extensive deamination and methylation
by monoamine oxidase and catechol-O-
methyltransferase, respectively. During moder-
ate sodium surfeit, dopamine of renal origin ac-
counts for ~50% of sodium excretion. In
experimental and human hypertension a re-
duced renal production of dopamine and a D1
receptor-G protein coupling defect have been
reported. Patients suffering from chronic
parenchymal diseases with a compromised
renal function present a reduced renal dopamine
output which correlates well with the degree of
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deterioration of renal function. However, in con-
trast to what has been found in sodium-sensi-
tive primary hypertension, renal dopamine may
behave appropriately in experimental and human
renal insufficiency, as a compensatory natriu-
retic hormone.

INTRODUCTION

Dopamine is a catecholamine playing two
important roles in neurobiology:1) as an inter-
mediate in the biochemical pathway from the
amino acid tyrosine to norepinephrine and
epinephrine and 2) as a direct neurotransmitter
in its own right. In neurons, dopamine is synthe-
sized by the initial hydroxylation of tyrosine by
tyrosine hydroxylase to L-3,4-dihydroxypheny-
lalanine (L-Dopa) followed by the decarboxyla-
tion by aromatic L-amino acid decarboxylase (L-
AADC) to dopamine. The role of dopamine as a
neurotransmitter in the regulation of motor func-
tion and behaviour in the central nervous sys-
tem is well established. However, it is only during
the past two decades that peripheral dopamine
has been characterized as an important modu-
lator of renal sodium excretion and blood pres-
sure by direct actions on renal epithelial ion
transport and by modulation of the secretion of
hormonal/humoral agents such as aldosterone,
catecholamines, renin, 5-hydroxytryptamine and
vasopressin. The actions of endogenous renal
dopamine on water and electrolyte transport are
modest in euvolemic conditions but become
magnified during moderate sodium excess.
Thus, following a moderate acute or chronic
sodium load, up to 50% of sodium excretion is
mediated by dopamine produced by the renal
proximal tubules. In this paper there will be a
brief discussion of the renal dopamine synthe-
sis and metabolism and the potential role of
intrarenal dopamine as a paracrine regulator of

sodium homeostasis. The potential role of the
renal dopamine system in the regulation of so-
dium balance during early chronic renal insuffi-
ciency will be also examined.

RENAL DOPAMINE RECEPTORS

When dopamine is released peripherally, it
acts on receptors distinguishable from classi-
cal α and β-adrenoceptors and it is now well
accepted that there are specific dopamine
receptors in many peripheral tissues, including
certain vascular beds, and, particularly, in the
kidney1. Peripheral dopamine receptors have
been subdivided into two major families as D1–
like (includes D1 and D5, the rat homologues of
which are D1A and D1B) and D2-like (includes D2,
D3 and D4) dopamine receptors based on the
stimulation and inhibition of adenylyl cyclase,
respectively2. This has been achieved with the
help of specific agonists for D1 (fenoldopam) and
D2 (quinpirole) receptors and antagonists (SCH
23390 for D1 and domperidone for D2). These
receptors belong to the rhodopsin-like family and
are called G protein-coupled receptors because
of their interaction with heterotrimeric G proteins,
composed of α, β and γ subunits3. The D1–like
receptors cause direct vasodilatation, diuresis
and natriuresis. On the other hand, D2–like
receptors cause indirect vasodilatation by inhi-
bition of norepinephrine release and also inhibit
aldosterone production within the adrenal gland1.

The role of dopamine as a regulator of renal
function was first recognized in the early 1970s,
when it was found that dopamine increased the
glomerular filtration rate and sodium excretion4.
These observations led to extensive clinical use
of dopamine to improve renal function in criti-
cally ill patients. It soon became apparent that
dopamine had a natriuretic effect, independent
of the increase in glomerular filtration rate. The
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renal localization of D1-like and D2-like dopamine
receptors has been studied with radioligand bind-
ing and autoradiographic studies5. The D1-like
receptors are present in the smooth muscle of
renal arteries and juxtaglomerular apparatus and
in the renal tubules whereas the D2–like
receptors are expressed in the intimal layer of
the renal vasculature, glomeruli, sympathetic
nerve terminals and renal tubules. The tubular
D1-like dopamine receptor density is higher in
humans than in rats. In addition, the density of
D1-like receptors is higher in the proximal tubule
than in the distal part of the nephron. Either the
D1-like and D2-like receptors have been found in
both the apical and basolateral membranes of
the proximal tubule. Although there are two
classes of dopamine receptors, the natriuretic
effect of dopamine is primarily mediated by D1-
like receptors1.

DOPAMINE, AN INTRARENAL HORMONE

Studies on renal dopamine content and on
the relationship between the amount of dopamine
filtered and the amount of dopamine and
dopamine metabolites excreted in urine first
suggested that dopamine was formed in the kid-
ney4. This was confirmed by studies into the rate
of dopamine formation from L-DOPA in slices
and isolated proximal tubules6,7. The kidney is
endowed with one of the highest decarboxilating
activities in the body and most of the L-AADC is
located in the proximal convoluted tubules7. This
was confirmed for the cytosolic fraction of rat
renal cortical cells and rat medullary cells. At
most, the rat renal medulla forms about 6-8%
of dopamine8 whereas L-AADC in the renal
medulla of the human kidney accounts for 26%
of that determined in the renal cortex9. The first
evidence suggesting that the renal synthesis of
dopamine is submitted to some sort of regula-

tion was obtained under in vivo experiments and
showed that sodium loading is accompanied by
an increased urinary excretion of dopamine1.
This has been found to occur both in humans
and laboratory animals and a low sodium diet
results in a decrease in the urinary excretion of
dopamine. The increased urinary excretion of
sodium during high sodium (HS) intake is also
dependent on an increased production of
dopamine, since blockade of dopamine
receptors attenuates the natriuresis that accom-
panies a high renal delivery of sodium10. The
tubular transport of L-DOPA has been charac-
terized as an active process with great struc-
tural specificity11. We have reported in both hu-
man and rat kidney preparations that the
production of dopamine is not only closely de-
pendent on the extracellular sodium, but also
appears to be related to the transtubular reab-
sorption of sodium9,12. These results suggested
that the tubular uptake of L-DOPA is coupled to
that of sodium, its rate being determined by the
rate of transcellular movement of sodium (fig-
ure 1). Until now the most powerful stimulus
known to increase the renal production of
dopamine is sodium loading, though chloride and
protein intake may also be of importance1. It is,
therefore, understandable why HS intake has
been used by several groups of researchers as
an experimental tool for the study of the renal
dopaminergic system. The mechanism respon-
sible for such an increased urinary excretion of
dopamine during HS intake appears to involve
mainly an enhancement of L-AADC activity13.

Dopamine of renal origin has autocrine and
paracrine natriuretic effects in the kidney. The
natriuretic effect of intrarenal dopamine was first
observed after administration of the dopamine
prodrug gludopa2. Gludopa is devoid of pharma-
cological activity per se but is converted to L-
DOPA and then to dopamine by sequential ac-
tions of the brush border enzyme γ-glutamyl
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transpeptidase (γ-GT) and cytosolic L-AADC in
proximal tubules, where both enzymes exist in
abundance14. Administration of physiological
quantities of gludopa was accompanied by a
significant natriuresis with no detectable change
in intrarenal blood flow, indicating a predomi-
nantly tubule effect10,15. During conditions of
normal sodium balance, intrarenal dopamine is
a major physiological regulator of urine sodium
excretion. Studies employing a specific D1-like
receptor antagonist (SCH-23390) have demon-
strated that ~50% of basal sodium excretion is
controlled by endogenous renal dopamine10,16.
Administration of SCH-23390 at low infusion
rates directly into the renal artery engendered a
dose-dependent antinatriuresis that was revers-
ible on cessation of infusion10. No changes in
renal blood flow and glomerular filtration rate
were observed. These studies were the first to
show that dopamine acts as a paracrine sub-
stance, locally modulating renal sodium excre-
tion. A recent study further provided direct evi-
dence for a natriuretic effect of endogenous renal
dopamine17. Infusing uninephrectomized rats
with antisense oligodeoxynucleotides directly
into the renal interstitial space reduced the ex-
pression of D1A receptor protein by ~ 40% with-
out influencing D1B (D5) receptors. This was
accompanied with a decrease in the urinary
excretion of sodium in conditions of both nor-
mal and high sodium intake. Very little is known
about the role of the D2-like receptor family in
the control of renal function and sodium han-
dling compared with the large amount of infor-
mation available for D1-like receptors.

Dopamine of renal origin has been found to
undergo extensive deamination to 3,4-dihy-
droxyphenylacetic acid (DOPAC), O-methyla-
tion to 3-metoxytyramine (3-MT) and deamina-
tion plus O-methylation to homovanillic acid
(HVA)18,19 (figure 1) and the high levels of meta-
bolic enzymes such as types A and B monoam-

ine oxidase (MAO-A and MAO-B) and catechol-
O-methyltransferase (COMT) have been con-
sidered important determinants in the overall
availability of renal dopamine. MAO-A is more
important than MAO-B for deamination of renal
dopamine19. In rat renal cortical slices incubated
with L-DOPA, deamination by MAO was found
to be the major metabolic pathway for renal
dopamine20 whereas in the intact kidney COMT
was suggested to play a major physiological role
in the regulation of the renal dopamine tonus4.
Taken together, these findings raised the ques-
tion of whether the intracellular localization of
COMT is such that it plays the most important
physiological role for the regulation of the renal
dopamine system whereas MAO may be more

Figure 1: Schematic representation of the mechanisms involved
in the synthesis, outward transfer and metabolism of dopamine
in an epithelial cell of proximal tubules. Tubular uptake of L-
Dopa is a saturable and sodium-dependent mechanism. Once
inside the cell, L-Dopa is decarboxylated by aromatic L-amino
acid decarboxylase (L-AADC) to dopamine (DA), which is
then transported to the extracellular medium. Dopamine can
activate specific receptors (D1 and D2) located at basolateral
and apical cell borders leading to inhibition of Na+-K+ ATPase
and Na+-H+ exchanger. Once inside the cell, dopamine is exten-
sively deaminated by monoamine oxidase (MAO) to 3,4-
dihydroxyphenylacetic acid (DOPAC), O-methylated by cat-
echol-O-methyltransferase (COMT) to 3-metoxytyramine (3-
MT) and deaminated plus O-methylated to homovanillic acid
(HVA). Dopamine and dopamine metabolites leaving the cell
through the apical cell border are excreted in urine.
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of a housekeeping enzyme. Dopamine excreted
in urine is mainly derived from intrarenally pro-
duced dopamine. Because the daily urinary ex-
cretion of both DOPAC and HVA is several fold
that of the parent amine21, these two amine
metabolites are used as useful parameters for
the assessment of the renal dopaminergic sys-
tem activity as well as of the activity of the cor-
responding metabolizing enzymes.

Na+-K+ ATPase activity constitutes the driving
force for tubular sodium reabsorption and much
work has gone into the effect that dopamine has
on regulating Na+-K+ ATPase activity. Dopamine
inhibits Na+-K+ ATPase activity in the entire ne-
phron including the proximal tubule, the thick
ascending limb of Henle (mTAL), the distal tu-
bule, and the cortical collecting duct 22,23. The
major cell signaling pathways whereby dopa-
mine mediates inhibition of Na+-K+ ATPase are
depicted in figure 2. In the proximal tubule, both
protein kinase A (PKA) and protein kinase C
(PKC) are involved in the phosphorylation of the
α-subunit of the Na+-K+ ATPase, whereas in the
mTAL and the cortical collecting duct only PKA
is required22,23. PKC may inhibit Na+-K+ ATPase
also by stimulation of PLA2 activity and the gen-
eration of 20-HETE by cytochrome P-450 (fig-
ure 2). Dopamine also inhibits the Na+-H+ ex-
changer (NHE) and the Na+-Pi cotransporter in
the apical membrane of the proximal tubules2.
The inhibitory action of dopamine on NHE is pre-
dominantly due to D1-like receptors leading to
activation of cAMP and PKA. In addition, renal
proximal tubule apical NHE activity can also be
inhibited via G proteins directly, independently
of cAMP and phosphorylation mechanisms or
by stimulation of P-450 eicosanoids, such as
20-HETE. As a result of these actions of
dopamine, intracellular Na+ is too low to stimu-
late Na+-K+ ATPase activity.

Intrarenal dopamine can act in connection
with other natriuretic hormones and can oppose

the effects of anti-natriuretic hormones by short-
term and long-term effects. Evidence has been
gathered that the natriuretic effect of atrial natriu-
retic peptide (ANP) requires the presence of
dopamine receptors24,25. In addition, the inhibi-
tory effect of dopamine on Na+-H+ exchanger in
the proximal tubule is potentiated by ANP26. The
interaction between circulating ANP and
intrarenal dopamine should contribute to a well-
balanced sodium homeostasis by allowing for
adjustment between extrarenal volume sensors
and local renal sensors. The recent findings that
ANP can recruit intracellularly located D1
receptors to the plasma membrane4 offers an
explanation for how ANP interacts synergistically
with renal dopamine. By a way of contrast,
dopamine opposes the effects of antinatriuretic
factors, such as angiotensin II (AII), 5-hydrox-
ytryptamine (5-HT) and α-adrenoceptor stimu-
lants. Dopamine and α-adrenergic agonists
conteract each other’s effect on the basolateral
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Figure 2: Schematic representation of D1-like dopamine
receptor and associated cellular signaling mechanisms in the
nephron that mediate the inhibition of sodium-transporting
proteins and increase renal sodium excretion. Protein kinase C
(PKC), directly or via PLA2, may phosphorylate Na+-K+

ATPase. Protein kinase A (PKA) directly phosphorylate Na+-
H+ exchanger. IP3, inositol triphosphate; DAG, diacylglycerol;
Cyt P450, cytrochrome P450; Pi, phosphorylation.
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Na+-K+ ATPase27. Acting through D1-like
receptors dopamine inhibits the stimulatory ef-
fect of AII on Na+-K+ ATPase in part by reducing
angiotensin I receptor (AT1) expression in proxi-
mal tubules2. This supports the view of a cross-
talk between the dopamine and renin-angi-
otensin system in the renal proximal tubule. In
renal proximal tubules, 5-hydroxytriptophan is
decarboxylated by L-AADC to 5-HT in the same
cellular compartment where the renal synthe-
sis of dopamine takes place28. The nature of the
antagonistic effects of natriuretic dopamine and
antinatriuretic 5-HT in renal tissues appears not
only to depend on the reciprocal effects of the
two amines on renal sodium excretion, but has
also to do with the intracellular availability of their
amino acid precursors, competition for decar-
boxylation by L-AADC and the ability of the newly-
formed amines to leave the cellular compart-
ment29. Acting through D1-like receptors
dopamine inhibits vasopressin-dependent wa-
ter permeability and sodium transport in the rat
cortical collecting duct30. Finally, dopamine act-
ing through a D2-like receptor significantly en-
hances the production of prostaglandin E2 in the
collecting duct. This effect appears to be medi-
ated via PLA2 

31.

RENAL DOPAMINE SYSTEM IN CHRONIC
RENAL INSUFFICIENCY

Patients suffering from chronic renal insuffi-
ciency have a reduction in the urinary excretion
of dopamine and metabolites, the extent of
which is related to the degree of renal failure32.
However, the residual tubular units in patients
with compromised renal function maintain an
intact ability to take up and decarboxylate L-
DOPA to dopamine and deaminate the newly-
formed amine to DOPAC32. The reduced renal
dopamine output in chronic renal insufficiency

may essentially result from the reduced number
of functional tubular units endowed with the abi-
lity to produce dopamine. Several studies ad-
dressed the question of whether the decreased
synthesis of renal dopamine in chronic renal
failure may compromise sodium excretion and
contribute to the increase of blood pressure.
Casson33 studied eight patients with chronic
glomerulonephritis who were in stable chronic
renal failure, comparing them with five age-
matched normal subjects. The studies were
carried out under metabolic balance conditions,
first on a low sodium diet and then with added
sodium chloride. The urinary excretion of
dopamine was much lower in the patients than
in the control subjects and did not rise in the
patients on salt loading when compared with the
normal response observed in the control sub-
jects. This suggested that the abnormal reten-
tion of sodium in chronic renal failure is accom-
panied by failure to mobilize dopamine in kidney.
However, most of the patients in this study were
previously treated with several anti-hypertensive
drugs and received a low sodium diet during a
reduced number of days, which may have been
insufficient to decrease the possible cumulative
sodium balance in those patients with chronic
renal insufficiency. We examined the 24h am-
bulatory blood pressure responses to changes
in sodium intake in seventeen pre-hypertensive
untreated IgA-N patients with near normal renal
function to determine whether a reduced renal
dopaminergic activity in the early stage is re-
lated to salt sensitivity of blood pressure34. In
these 17 IgA-N patients with near normal renal
function, a reduced production of dopamine in
renal proximal tubules was related to a rightward
shift in the “pressure-natriuresis” curve. In addi-
tion, the salt-sensitive IgA-N patients presented
a reduced GFR in comparison to the salt resist-
ant ones. This suggests that the decreased pro-
duction of renal dopamine in the salt-sensitive
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group was related to a reduced number of tubu-
lar units endowed with the ability to produce
dopamine. Interestingly, the increase in renal
dopamine synthesis during salt loading in salt-
sensitive IgA-N patients was more pronounced
than in the salt resistant ones. To our knowledge,
this was the first study to suggest that salt sen-
sitivity of blood pressure in humans suffering
from chronic renal parenchymal diseases is
accompanied with a compensatory response of
the renal dopaminergic system during salt load-
ing. This behavior of the renal dopaminergic
system in IgA-N patients with salt-sensitive blood
pressure contrasts with the findings in a subset
of patients with salt-sensitive primary hyperten-
sion and young healthy normotensive subjects
with a family history of hypertension35,36. In these
conditions, there seemed to be a normal deli-
very of L-DOPA to the renal tubular cells, but a
defective uptake or conversion of dopamine in
this cellular compartment.

The physiological role of the renal dopamine
system in renal insufficiency was addressed
further in studies performed with animal models
of reduced renal mass. Issac et al.37 provided
evidence for an increased dopamine output per
residual nephron in the remnant kidney from rats
submitted to ¾ nephrectomy. This was associ-
ated with the enhanced fractional excretion of
phosphate by the remnant kidney. In the unine-
phrectomized rat model we have also found an
enhanced renal dopaminergic activity per re-
sidual nephron that responded to HS intake with
further increase in dopamine synthesis38. This
indicates that renal dopamine may play an im-
portant role in keeping uninephrectomized rats
within sodium balance. Conclusive evidence
was recently provided for the effect of endo-
genous renal dopamine as a paracrine sub-
stance, locally modulating renal sodium excre-
tion in conditions of reduced renal mass39.
Uninephrectomized, ¾ nephrectomized and

Sham control rats were evaluated before, dur-
ing and after volume expansion with saline (5%
bw) which resulted in similar natriuretic re-
sponses in the three groups. When the rats
were infused with the D1 antagonist SCH-23390
(30µg.h-1.kg-1) a decrease in the urinary excre-
tion of sodium was observed in the three groups
during both normal and high sodium intake. Ho-
wever, the decrease in sodium excretion in-
duced by the selective D1 antagonist was more
pronounced throughout the study in the ¾ ne-
phrectomized rats indicating that renal dopamine
plays an important role in renal sodium handling
during early chronic renal insufficiency39.

CONCLUSION

In light of the present evidence it is likely that
in chronic renal parenchymal diseases the so-
dium sensitivity of blood pressure is accompa-
nied with an absolute decrease in renal dopa-
mine synthesis which is related to a reduced
number of tubular units endowed with the ability
to synthesize the amine. However, this is ac-
companied with an enhanced dopamine output
per residual nephron in tandem with dopamine-
sensitive enhanced natriuresis indicating that
renal dopamine may play an important role in
tubular sodium handling during early chronic
renal insufficiency.
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